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Abstract

Purpose – The purpose of this paper is to present a non-equilibrium viscous shock layer (VSL)
solution procedure that considerably improves computational efficiency, especially for long slender
bodies.
Design/methodology/approach – The VSL equations are solved in a shock oriented coordinate
system. The method of solution is spatial marching, implicit, finite-difference technique, which
includes coupling of the normal momentum and continuity equations. In the nose region, the shock
shape is specified from an algebraic expression and corrected through global passes through that
region. The shock shape is computed as part of the solution beyond the nose region and requires only
a single global pass. For this study, a seven-species ðO2;N2;O;N ;NO;NOþ; e�Þ air model is used.
Findings – The present approach eliminates the need for initial shock shape, which was required by
previous method of solution. This method generates its own shock shape as a part of solution and the
input shock shape obtained from a different solution is not required. Therefore, in comparison with
the other VSL methods, the present approach dramatically reduces the CPU time of calculations.
Moreover, by using the shock oriented coordinate systems the junction point problem in sphere-cone
configurations is solved.
Practical implications – This method is an excellent tool for parametric study and preliminary
design of hypersonic vehicles.
Originality/value – The present method provides a computational capability which reduces the
CPU time, and expands the range of application for the prediction of hypersonic heating rates.
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Nomenclature

ci ¼mass fraction of species i, ri/r

Cp ¼ specific heat at constant
pressure, C�P=C�P1

h ¼ static enthalpy, h�=V�21
h1; h3 ¼metrics

Ji ¼ diffusion mass flux of species i,
J�i R�n=mref

k ¼ thermal conductivity,
k�=m�refC

�
P1

ki;w ¼ surface reaction rate coefficient,
k�i;w=V1

Le ¼Lewis number

M ¼Mach number

Mi ¼molecular weight of species i

nb ¼ Shock standoff distance

Ns ¼ number of reacting species

p ¼ pressure, p�=��1V �21
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Pr ¼Prandtl number

q ¼ heat transfer rate, q�=��V �31
Rn ¼ body nose radius

R*
u ¼ universal gas constant

r ¼ radius measured from axis of
symmetry, r�=R�n

s ¼ coordinate measured along the
shock wave, s�=R�n

T ¼ temperature, T�C�P1=V2
1

u ¼ velocity component tangent to
the shock, u�=V�1

v ¼ velocity component normal to
the shock, u�=V�1

x; r; ¼ cylindrical coordinate system
�

" ¼Reynolds number parameter,
ðmref=�

�
1u�nR�nÞ

1=2

�b ¼ body angle

�s ¼ shock angle

�n ¼ normalized n coordinate, 1-n/nb

� ¼ viscosity, m�=m�ref

� ¼ normalized s coordinate, � ¼ s

r ¼ density, r�=r1

g ¼ catalytic recombination
coefficient of species i

_vv ¼mass rate of formation of
species i, _vvR�n=r

�
1V�1

Subscript and superscript

b ¼ body value

i ¼ species index

s ¼ shock value

w ¼wall value

1 ¼Free stream condition

* ¼ dimensional quantities

I. Introduction
At re-entry speeds the temperature near a body becomes extremely high, especially in
the stagnation region. The high temperature and high convective velocities relative to
reaction times mean that chemical non-equilibrium effects can be significant.
Therefore, the air in the shock layer dissociates and ionizes. These phenomena will
change considerably the chemical composition of the air and this change will be
extended along the body. Accurate aerothermodynamic predictions during this part of
the reentry trajectory are essential for sizing both the thermal protection system and
aerodynamic control surfaces. For an accurate description of the flowfield, one must
account for these real gas effects. Also an accurate estimate of the ionization level is
needed for radio communication purposes. Therefore, a flowfield model including
finite-rate chemistry is required.

The calculation of hypersonic viscous flowfields past long slender axisymmetric
blunt bodies is of prime interest to the designer of certain aerospace vehicles. Since
simulation of the high-energy thermodynamic environment of earth entries in ground-
based experimental facilities is difficult, accurate and reliable flowfield prediction
capabilities must be developed for efficient and reliable design of reentry vehicle. The
development of the high-speed digital computers made numerical techniques an
attractive tool for solving complex flowfields. Three popular computational
approaches for obtaining aerothermodynamics predictions on these classes of vehicles
are to solve the Navier-Stokes (NS) equations (Olynick and Tiwari, 1996), Parabolized
Navier-Stokes (PNS) equations (Bhutta and Lewis, 1991) or Viscous Shock-Layer (VSL)
equations. For highest fidelity, solutions to the full Navier-Stokes equations would be
required, but this is very time- consuming. The PNS equations can be solved using a
space-marching technique instead of the time-marching procedure which is usually
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employed for the NS equations. The principle difficulty in applying the PNS equations
to the hypersonic vehicles is that commonly the algorithms cannot solve blunt-body
flowfields, while most reentry vehicle designs incorporate blunted nose in order to
reduce peak heating rates. In addition, the numerical solution of the PNS equations
requires a substantial amount of computer time and storage. The extensive computer
run times prevent these approaches (i.e. NS and PNS) from being used in the
preliminary design environment.

The third approach is to employ the VSL equations. The VSL equations were
developed by Davis (1970a) and yield a simplified set of governing equations that are
uniformly valid through the shock layer. The VSL method can accurately predict the
blunt-body flowfield for a small fraction of the computing time required by NS
schemes. This choice is very desirable for the preliminary design process where a
range of geometries and flow parameters must be analyzed.

Numerous computational schemes for the solution of the VSL equations have been
investigated in the past. Blottner (1969) was the first to develop the VSL approach for a
multicomponent reacting gas at the stagnation point. He was followed shortly
thereafter by Davis (1970b), who solved the VSL equations for a binary reacting gas
and included flow downstream of the stagnation point. Both these works treated the
fully catalytic case. Miner and Lewis (1975) extended the method of Davis (1970a) to a
seven-species mixture and applied both fully catalytic and non-catalytic boundary
conditions. Scott (1985) modified the Miner and Lewis code to include finite-rate
catalycity for oxygen and nitrogen recombination. Kim et al. (1983, 1984) developed a
three-dimensional VSL code for non-equilibrium flow over the space shuttle and
included surface catalytic effects. Based on Davis (1970b) analysis, Moss (1974)
developed a code using the VSL equations for a multicomponent gas mixture with
chemical equilibrium or non-equilibrium. The VSL method of Moss (1974) updated by
coupling the normal momentum and continuity equations (Lee and Gupta, 1992), which
made the method of Moss (1974) stable even for the massive blowing conditions.

In the previous methods, an initial shock shape was required to start the solution of
VSL equations. This was obtained by various procedures (thin VSL, inviscid
solution,. . .), each requiring considerable computational effort. Moreover, the shock
shape extending to the entire length of the body is globally iterated. The initial shock
shape generation and the global iterations over the entire length of the body required
considerable computational effort and run time respectively. Riley (1992) developed a
method to obtain the inviscid flowfield around the blunt bodies in which the shock
shape was generated. Cheatwood and DeJarnette (1992) used the same method to solve
the approximate viscous shock layer (AVSL) equations. It is noticed that AVSL is an
AVSL technique whose governing equations are identical to those of the standard VSL
technique except that Maslen0s pressure relation is substituted for the normal
momentum equation. In the present work, this method was developed for solving the
VSL equations in chemical non-equilibrium flow conditions.

The present approach generates its own shock shape as a part of solution and
provides a smooth shock shape in subsonic and supersonic regions. Therefore, the
input shock shape obtained from a different solution is not required. It eliminates the
need for initial shock shape, which was required by previous method of solutions.
Moreover, the global iterations are limited to the subsonic region which is small region
in the hypersonic flow over the blunt bodies. The VSL equations are solved in a shock
oriented (rather than the traditional body oriented) coordinate system. Note that the use
of a body coordinate system introduces discontinuities in the solution of governing
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equations associated with the surface curvature discontinuity, such as at the sphere-
cone tangency point of a spherically blunted cone. Also, the first-order continuity and
normal momentum equations are solved simultaneously and the Vigneron condition is
employed for the streamwise pressure gradient in the subsonic nose region. For most
reentry applications, the temperature in the shock layer is such that a seven-species
reacting model with a single ionizing species represents the chemistry reasonably well.
In the present work, seven species ionizing air is considered, and it is assumed that
chemical reactions proceed at finite rate. The accuracy of the developed code is
validated by comparing the computational results with other solutions and available
experimental data.

II. Analysis
II.a Governing equations
The conservation equations employed in this analysis are the VSL equations for a
blunt axisymmetric body at zero angle of attack. These equations are written in a
shock-oriented coordinate system (s,n) where the s coordinate is tangent to the shock in
the stream wise direction and n is the normal to the shock (see Figure 1). To facilitate
the solution, the VSL equations are transformed to normalized coordinates (j,hn). The
non-dimensional forms of the VSL equations for non-equilibrium flow in a normalized
shock oriented coordinate system are: global continuity:
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Species Continuity:
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II.b Boundary conditions
The boundary conditions at the shock are obtained by using the Rankine-Hugoniot
relations. The flow behind the shock is assumed to be frozen at the freestream
composition. No-slip boundary conditions are employed at the surface because the VSL
equations in this study only simulate flight at lower altitudes. The wall conditions of
chemical species are governed by catalytic relations on the wall and are obtained from
the equation:

Ji;w �
�ki;w

"2
ci ¼ 0 ð7Þ

In the present work, three catalytic wall boundary conditions namely non-catalytic
wall, fully catalytic wall, and finite-rate catalytic wall are used.

For a non-catalytic wall, the catalytic recombination rate is equal to zero (Gupta
et al., 1985), i.e.

@ci

@�n

� �
¼ 0 ð8Þ

On the fully catalytic wall, the gas species are assumed to recombine to the freestream
composition, i.e.

Figure 1.
Shock-oriented coordinate
system
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ci;w ¼ ci;1 ð9Þ

For the finite-catalytic wall, the catalytic recombination rate is expressed as

ki;w ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R�uT�w
2�M�

i

s
�i ð10Þ

In the present study, according to Gupta (1996), the recombination coefficient for
oxygen atom �o is given as

�
O
¼ 8:0 expð�8600=T�wÞ ð11Þ

The recombination coefficient for nitrogen is the same as that employed by Scott
(1981):

�
N
¼ 0:00714expð � 2219=T�wÞ ð12Þ

The mass concentrations for other minor species including NO are set to be zero.

II.c Thermodynamic and transport properties
Thermodynamic properties for specific heat and enthalpy and transport properties for
viscosity and thermal conductivity are required for each species considered. Values for
the thermodynamic and transport properties are obtained by using curve fits give in
Thompson et al. (1990). The mixture viscosity is obtained by using the Wilke0s (1950)
semi-emperical relation, and the mixture thermal conductivity is calculated using the
formula of Mason and Saxena (1958). A constant Lewis number of 1.4 is used, and a
variable Prandtl number is computed.

II.d Shock shape
In the present approach, the shock shape is generated as part of the solution. The shock
shape is calculated based upon the method which is presented in Riley (1992). As
mentioned earlier, the subsonic-transonic region is elliptic in nature, therefore, a
marching scheme is not well posed. Thus, the complete shock shape for the entire
subsonic-transonic region must be determined iteratively. A marching procedure is
then used downstream of the subsonic-transonic region where the inviscid layer is
supersonic. Generally, the three-dimensional shock surface in the subsonic-transonic
region can be represented by three longitudinal conic sections blended in the
circumferential direction with an ellipse as:

r ¼ f ðx; �Þ ð13Þ

Where ðx; r; �Þ are cylindrical coordinates. The x axis is aligned with the freestream
velocity vector and is normal to the shock surface at the origin. Also f(x,�) is defined as

f 2 BðxÞ cos2ð�Þ þ sin2ð�Þ
h i

þ fCðxÞ cosð�Þ ¼ DðxÞ ð14Þ

in which
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BðxÞ ¼ f 2
2

f1 f3
; CðxÞ ¼ BðxÞð f3 � f1Þ; DðxÞ ¼ f 2

2

Note that f(x,�) is the radial coordinate of the three-dimensional shock surface in
shock cylindrical coordinate system. The equation of the longitudinal conic sections is
given by

f 2
k þ bkx

2 � 2ckxþ 2dkxfk ¼ 0 ; k ¼ 1; 2; 3 ð15Þ

Where k represents shock profiles for � ¼ 0�, 90� and 180�, respectively. The shock
shape, defined above includes nine parameters of bk, ck and dk where k ¼ 1,2,3. For an
axisymmetric flow, the total number of parameters governing the shock surface is
reduced to b1 and c1 (Riley, 1992). The global iteration of the shock surface in the
subsonic region involves matching the shape computed from the VSL equations to the
actual body geometry. To insure a good starting solution for the downstream marching
procedure, the matching body points are located at the end of the subsonic region
where the inviscid layer is supersonic. Note that in this procedure flowfield is also
solved behind the shock wave. At first, initial values are guessed for the above two
parameters. The appropriate initial shock shape is produced by the values of 0.98 and
1.2 for b1 and c1. Since the initial shock shape (and the resulting jump condition) is
known, the governing equations can be solved for the entire subsonic to obtain the
calculated shock layer thickness, nb, for all stations. The calculated thickness can be
determined from the continuity equation:

cos �s

r2
s

ð1

0

�uð�n � 1Þd�n

� �
n2

b þ
1

rs

ð1
0

�ud�n

0
@

1
Anb �

1

2
¼ 0 ð16Þ

The values for the calculated shock layer thickness at the two stations near the end of
the subsonic region are compared with the values dictated by the geometry. Based on
calculated and geometric shock layer thickness, new values of shock shape parameters
b1 and c1 are computed. With each variation of these two parameters, the flowfield is
solved for the entire subsonic region. This procedure is repeated until the calculated
values of nb at these two stations match to the geometric values. Downstream of this
region, the shock shape is calculated through a marching scheme requiring no global
iterations. For the supersonic region, the shock shape at the current station is described
by a truncated Taylor0s series (Cheatwood and DeJarnette, 1992).

rs ¼ rsi�1
þ�xs
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� �
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þ�x2
s

6
2
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i�1

þ d2rs

dx2
s

� �
i

� �
ð17Þ

Where the shock slope is given by

drs

dxs
¼ drs

dxs

� �
i�1

þ�xs

2

d2rs

dx2
s

� �
i�1

þ d2rs

dx2
s

� �
i

� �
ð18Þ

In these equations, the only unknown is the second derivative of rs with respect to xs

(which is proportional to the shock curvature) at the current station. The initial value
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for this parameter is calculated by linear extrapolation of its values at the previous two
stations. Once the shock geometry and the corresponding jump conditions are
constrained, the governing equations are solved. Then the calculated and the geometric
values of nb are compared to determine the error. Through successive application of
the secant method (accompanied by a solution to the fluid equations), 	err converges to
a specified tolerance (1� 10�4). In summary, in the subsonic-transonic region, shock
shape is specified from an algebraic relation and corrected through global iterations
through that region. The shock shape is computed as part of the solution beyond the
subsonic-transonic region. Thus, shock shape is not required as an input by the user.

II.e Method of solution
The method used for solving the full VSL equations is a spatial-marching, implicit,
finite-difference method which includes coupling of the continuity and normal
momentum equations. In the normalized shock-coordinate system (j,hn), the
conservation equation for streamwise momentum and energy can be written in the
standard parabolic form:

A0
@2W

@�2
n

þ A1
@W

@�n
þ A2W þ A3 þ A4

@W

@�
¼ 0 ð19Þ

where W represents the dependent variables u, T and, ci, respectively. The coefficients A0

through A4 are non-linear coefficients. For the energy equation, the non-linearities are
handled through a simple lagging technique. However, in order to speed convergence, the
streamwise momentum equation is quasi-lineralized. In the finite-difference method used
to solve the streamwise and energy equations, a two point backward differences is used
for the derivatives with respect to j. The derivatives with respect to the �n are replaced
with three-point central differences. Replacing the differential terms by the finite-
difference expressions, the governing equations are expressed as:

AjWi; j�1 þ BjWi; j þ CjWi; jþ1 ¼ Dj ð20Þ

Evaluating the coefficients of Equation (20) at discrete points across the shock layer
along with the boundary conditions yields a tri-diagonal system of equations which may
be solved using Thomas algorithm. The continuity and normal momentum equations are
first order differential equations and, when solved independently, pose numerical
difficulties. However, using the coupling approach, these two first equations are coupled
together to form a second-order system that can be solved using Thomas algorithm.
These equations are solved for the pressure and normal velocity. The density in these
equations is eliminated by using the equation of state. The resulting equations are
expressed in the finite-difference form at points (i,j þ 1/2) and (i,j-1/2) using a box
scheme. The final form for the continuity and normal momentum equations are:

Ac; jþ1=2Vi; jþ1 þ Bc; jþ1=2Vi; j þ Cc; jþ1=2Pi; jþ1 þ Dc; jþ1=2Pi; j ¼ Ec; jþ1=2

Ac; j�1=2Vi; j þ Bc; j�1=2Vi; j�1 þ Cc; j�1=2Pi; j þ Dc; j�1=2Pi; j�1 ¼ Ec; j�1=2

Anm; jþ1=2Vi; jþ1 þ Bnm; jþ1=2Vi; j þ Cnm; jþ1=2Pi; jþ1 þ Dnm; jþ1=2Pi; j ¼ Enm; jþ1=2

Anm; j�1=2Vi; j þ Bnm; j�1=2Vi; j�1 þ Cnm; j�1=2Pi; j þ Dnm; j�1=2Pi; j�1 ¼ Enm; j�1=2

ð21Þ

The coefficients of these equations are given in the Appendix. Eliminating P and V
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alternatively in the coupled equations, two tridiagonal equations for pressure and
normal velocity are obtained as:

ApPi; j�1 þ BpPi; j þ CpPi; jþ1 ¼ Dp ð22Þ

AvBi; j�1 þ BvVi; j þ CvVi; jþ1 ¼ Dv ð23Þ

Equations (22) and (23) are solved in the same way as the streamwise momentum, energy
and species continuity equations. This numerical coupling enhances considerably the
overall numerical stability of the VSL solution scheme. It is note to be that the shock
standoff distance is evaluated by integrating the continuity equation.

The solution is started at the stagnation line. Using the stagnation line solution, the
VSL equations are solved at the next down stream location by employing a two point
backward-difference approximation for the streamwise derivative. The solution is
iterated until the convergence is achieved. This procedure is repeated until a global
solution at all locations is obtained. Note that the rate of production terms which are
function of both T and ci, appears in the species conservation and energy equations.
For the species conservation equations, Blottner0s approach is used to linearize the
production terms such that the species conservation appears as the only unknown.
Furthermore, the production terms in the energy equation are also linearized such that
the temperature appears as the only unknown. It is mentioned that at each location the
equations are solved in the following order: The species conservation, energy and
streamwise momentum equation are solved for ci, T and u, respectively. The
integration of the continuity equation determines the shock layer thickness, nb. Then,
the continuity and normal momentum equations are solved simultaneously for p and v.
Finally, the density � is obtained using the equation of state.

III. Results and discussion
At the first step the present method is validated against experimental and the other
VSL methods. Then the effect of catalytic wall on the surface quantities is studied
using this method. Note that all variables are non-dimensionalized by reference
quantities presented in nomenclature.

Figures 2 and 3 represent the result of the application of the method to STS-2
laminar heating and the results from the experiments from Shinn et al. (1982). An
‘‘equivalent axisymmetric body’’ concept was used in Shinn et al. (1982) to model the
windward centerline of the shuttle at a given angle of attack with an appropriate
axisymmetric body at zero angle of attack. The axisymmetric body is hyperboloid with
nose radii Rn and asymptotic body half-angles 
b as given in each figure. The results
that are shown on each figure are the experimental data and present VSL predictions
based on a finite-catalytic wall condition using kw, based on Equation (10). In Figure 2,
the surface heating rate for an altitude of 77.91 km are presented and are seen to
compare well (generally within 20 per cent) with the experimental data. At 60.56 km
altitude (Figure 3), the agreement between the predicted and measured heating value is
quite good (within five percent). The heating rates of present method for 6�, 10� and 20�

sphere-cones are compared with the VSL method by Lee and Gupta (1992) in
Figures 4-6. Freestream conditions are for 53.34 km altitude and Mach number of
25.The bodies have the same nose radius which equals 0.0381 m. Both non-catalytic
and fully catalytic surface are examined to show the limiting effects of wall catalycity
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on heating. It should be mentioned that all calculations were done using 101 grid points
between the body and the shock. The results of the present method are generally in
good agreement (within four to fifteen percent) with the Lee method. In the � direction,
the step size of 0.08 of Rn id used. In hn direction, the nodes are made dense near the
body. The above mentioned grid spacing are determined through the grid convergence
study which will be presented completely at the end of this section. The computed

Figure 2.
Comparison of calculated

and measured heating
rates an altitude of

77.91 km

Figure 3.
Comparison of calculated

and measured heating
rates an altitude of

60.56 km
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heating rate for 6� sphere-cone show excellent agreement with the results by Lee, while
the 20� sphere-cone shows a greater deviation. However, the maximum deviation (in the
spherical region) was found to be fifteen percent. From these figures, it is seen that
the heating rates with the non-catalytic surface may decrease more than 45 per cent in
comparison to that with the fully catalytic surface on the spherical region. The
differences in the heating rates decrease in the downstream region. Since globally
iterated results have been demonstrated to be quite accurate, results obtained by the

Figure 4.
Non-equilibrium heating
rate comparison for 6�

sphere-cone

Figure 5.
Non-equilibrium heating
rate comparison for 10�

sphere-cone
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present method are also considered equally good. The shock standoff distance for a 10�

sphere-cone is shown in Figure 7. The results obtained from the present method are in
good agreement with those obtained from the globally iterated technique. The electron
concentration profiles for the RAM C 9� sphere-cone are shown in Figure 8. Predictions
of electron concentration profiles for Sb ¼ 8.8 are given for 70.104, 76.20, 80.772 and
83.820 km. The freestream velocity and wall temperature for these altitudes are
7,620 m/s and 1,000�k, respectively. In Figure 8, the calculated results are compared
with the experimental data (Evans et al., 1973). The present calculations agree

Figure 6.
Non-equilibrium heating
rate comparison for 20�

sphere-cone

Figure 7.
Shock standoff distance

comparison for 20�

sphere-cone with non-
equilibrium chemistry
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reasonably well with the experimental data as to level of ionization. The agreement
between the present predictions and the experimental data is good at 70.104, 76.20 and
80.772 km, but at 83.82 km, the present method significantly underpredicted electron
concentration. It is important to notice that the present results are for no slip
conditions. It seems using the slip boundary condition will improve the results
especially for altitude of 83.82 km. From these figures, it is concluded that the results of
the present method are enough accurate against the results of experiments and other
methods of solution.

After validating the present method with other predictions and experimental data,
results for three sphere-cones with body half angles of 6�, 10� and 20� are now
presented to illustrate the effects of body angle and surface catalysis.

The calculations are for a Mach number of 25 at an altitude of 53.34 km. The results
for the ratio of surface heating rate with non-catalytic wall to that with fully catalytic
wall are shown in Figure 9. This ratio demonstrates the maximum potential for a
surface heating-rate reduction in the presence of dissociated non-equilibrium flow. The
ratios keep decreasing up to the tangency point, then increase up to maximum value in
the recompression region, and finally, decrease to a constant value on the far
downstream region. For stations beyond 80 nose radii, the results indicate a greater
potential for a heating reduction to the 20� cone than the corresponding to the 6 and 10�

cones. As shown in Figures 10 and 11, these results can be attributed to a higher
concentration of dissociated species present throughout the flowfield for energy
transport by diffusion to the surface for the wider angle cone. In this body region for
the lower cone angles, the necessary conditions to produce dissociated species exist
only in a smaller region of the boundary layer. Figures 12 to 14 show the effects of body
angle on the surface heating rates and surface pressure. Figures 12 and 13 represent
the heating rates for a non-catalytic wall and for a fully catalytic wall, respectively. The
surface pressure distributions are illustrated in Figure 14. As shown in Figure 14, the
wall catalycity has negligible effect on the surface pressure. It is seen that the surface

Figure 8.
Comparison of electron
concentration profiles for
RAM C
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heating rate and surface pressure decreases as the half body angle decreases. Electron
concentration profiles for the 6� sphere-cone are shown in Figure 15. The computations
are performed for a fully catalytic wall. As mentioned earlier, the slip conditions are not
considered in this study. Therefore, the species concentrations behind the shock are the
same as in the freestream, and thus the concentrations of both NOþ and electrons are
zero. The electrons are concentrated at the nose, and the concentration decrease in the s
direction. Since the maximum temperature in the shock layer is near the shock, the

Figure 9.
Effect of body angle on

non-catalytic to fully
catalytic heating ratio

Figure 10.
Species concentration

profiles for a non-catalytic
wall
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electron density occurs in the shock layer and decreases toward the shock. The present
method predicted this trend correctly.

A CPU time comparison between the results of present method and those of
(Cheatwood and DeJarnette, 1992) is presented here. The computer used for this study
includes a Pentium IV processor, and Ram of 512 Meg. The flowfield and the sphere-
cone are the same as the one in Figure 6, however, the solution is marched up to 250 Rn

Figure 11.
Species concentration
profiles for a fully
catalytic wall

Figure 12.
Body angle effect on non-
equilibrium heating rate
with non-catalytic wall
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for this CPU time comparison. The results are shown in Table I. As was mentioned
earlier a 65 per cent reduction in CPU time is obtained relative to method of
(Swaminathan et al., 1983). At the end, the grid convergence study is presented.
According to Table II, for ��*/Rn* ¼ 0.02, the effect of various nodes in hn direction is
given through cases a.1 to a.6. As is seen in Figure 16, there are no differences between

Figure 13.
Body angle effect on non-

equilibrium heating rate
with fully catalytic wall

Figure 14.
Body angle effect on

surface pressure
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the a.5 and a.6 curves. Therefore 101 nodes in hn direction is enough. Cases b.1 through
b.3 demonstrates the effect of different �� values for fixed node number of 101 in
direction hn. As is seen in Figure 17, there is no differences between these results.
Therefore a value of ��* ¼ 0.08 Rn* is appropriate.

Figure 15.
Electron concentration
profiles for 6� sphere-cone
at 53.34 km

Table I.
CPU time comparison

20� sphere-cone, RN ¼ 0.0381 m for length of 250 Rn

Sun sparcstation 1 þ Pentium IV
AVSL [13] VSL [22] AVSL [13] VSL present

Station 157 587 157 587
CPU time (sec) 525 7,961 31 168
Grid pts/sec 15 4 258 178

Table II.
Grid specifications for
turbulent cases

Cases No. of nodes in �n direction ���=R�n

a.1 31 0.02
a.2 51 0.02
a.3 71 0.02
a.4 81 0.02
a.5 91 0.02
a.6 101 0.02
b.1 101 0.04
b.2 101 0.06
b.3 101 0.08
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IV. Conclusions

A new technique to solve non-equilibrium VSL equations is proposed with increases

computational efficiency. For this study, a seven-species air model is used and the

chemical reaction model is taken from Blottner. In the present method, the initial shock

shape is not required and the global iteration is confined merely to the nose region. The

Figure 16.
Effect of number of nodes

in �n direction on the
surface heat transfer

distribution

Figure 17.
Effect of �� on the

surface heat transfer
distribution
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shock shape is defined with an algebraic (conic) equation and is iterated globally in
the nose region until the calculated body matches with the real body at the end of the
subsonic region. In the supersonic region, the marching scheme is well posed. Hence,
the shock shape and flow field can be determined in each station and there is no need
for global iteration. Since the subsonic region is only a small portion of the flow field
for hypersonic flows over slender bodies, and the global iteration is confined for this
region only in the present method, a significant reduction in CPU time is achieved.
Moreover, by using the shock coordinated systems the junction point problem in
sphere-cone configurations is solved. Results of the present method compare quite
favorably with experimental data and other predictions. Finally, we conclude that the
present method provides a computational capability which reduces the CPU time, and
expands the range of application for the prediction of hypersonic heating rates.
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Appendix
The coefficients for Equations (20) are obtained as follows:

Ac; jþ1=2 ¼ �
ðh1h3Þjþ1=2

��n; jþ1

Bc; jþ1=2 ¼
ðh1h3Þjþ1=2

��n; jþ1

Cc; jþ1=2 ¼
nbh3; jþ1=2ui; jþ1=2

2��iPi; jþ1=2

�
h3jþ1=2

��n; jþ1Pi; jþ1=2

ð�n; jþ1=2� 1Þui; jþ1=2
dnb

d�
þ h1jþ1=2

Vi; jþ1=2

� �

Dc; jþ1=2 ¼
nbh3; jþ1=2ui; jþ1=2

2��iPi; jþ1=2

þ
h3jþ1=2

��n; jþ1Pi; jþ1=2

ð�n; jþ1=2� 1Þui; jþ1=2
dnb

d�
þ h1jþ1=2Vi; jþ1=2

� �

Ec; jþ1=2 ¼
nbh3; jþ1=2ui; jþ1=2

2��iPi; jþ1=2
ðPi�1; jþ1þPi�1; jÞ�

nbh3; jþ1=2

2��i

ðui; jþ1þ ui; j� ui�1; jþ1

� ui�1; j�
ui; jþ1=2

Ti; jþ1=2

�ðTi; jþ1þTi; j�Ti�1; jþ1�Ti�1; jÞÞ�
nbui; jþ1=2

2��i

� ½ðh3Þi; jþ1þðh3Þi; j�ðh3Þi�1; jþ1�ðh3Þi�1; j� þVi; jþ1=2 ðh1Þjþ1=2

@h3

@�n

� �
jþ1=2

"

þðh3Þjþ1=2

@h1

@�n

� �
jþ1=2

#
�

Vi; jþ1=2ðh1h3Þjþ1=2

��n; jþ1Ti; jþ1=2

Ti; jþ1�Ti; j

	 


þ
nbh3; jþ1=2ð�n; jþ1=2� 1Þ

��n;jþ1

ui; jþ1� ui; j�
ui; jþ1=2

Ti; jþ1=2

ðTi; jþ1�Ti; jÞ
� �

þð�n; jþ1=2� 1Þui; jþ1=2
dnb

d�

@h3

@�n

� �
jþ1=2

�
ui; jþ1=2h3; jþ1=2nb

2��iMi; jþ1=2



HFF
19,5

594

�½Mi; jþ1þMi; j�Mi�1; jþ1�Mi�1; j



þ
ðh1h3Þjþ1=2Vi; jþ1=2

��n; jþ1Mi; jþ1=2

Mi; jþ1�Mi; j

	 

þ

ui; jþ1=2

Mi; jþ1=2��n; jþ1

dnb

d�
h3jþ1=2ð�n; jþ1=2� 1Þ Mi; jþ1�Mi; j

	 

Anm; jþ1=2 ¼

nbPi; jþ1=2ui; jþ1=2

2��ih1; jþ1=2

�
Pi; jþ1=2

��n; jþ1

ui; jþ1=2ð�n; jþ1=2� 1Þ
h1; jþ1=2

dnb

d�
þVi; jþ1=2

� �

Bnm;iþ1=2 ¼
nbPi; jþ1=2ui; jþ1=2

2��ih1; jþ1=2

þ
Pi; jþ1=2

��n; jþ1

ui; jþ1=2ð�n; jþ1=2� 1Þ
h1; jþ1=2

dnb

d�
þVi; jþ1=2

� �

Cnm; jþ1=2 ¼
�RuTi; jþ1=2

Mi; jþ1=2��n; jþ1

Dnm; jþ1=2 ¼
�RuTi; jþ1=2

Mi; jþ1=2��n; jþ1

Enm¼
nbPi; jþ1=2ui; jþ1=2

2��ih1; jþ1=2

ðVi�1; jþ1þVi�1; jÞ�
u2

i; jþ1=2Pi; jþ1=2

h1; jþ1=2

@h1

@�n

� �
jþ1=2

Corresponding author
S. Ghasemloo can be contacted at: sghasemloo@aut.ac.ir

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


